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SOLUTION OF PARAMETRIC INVERSE PROBLEM OF ATMOSPHERIC
OPTICS BY MONTE CARLO METHODS∗
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Abstract. In the article parametric inverse problems of atmospheric optics are considered. To

solve these problems we applied algorithm ”the method of dependent tests for transport theory

problems” of Monte Carlo methods. The problems reduced to linear system of equations for

parameters and solved by optimizations methods. The numerical solution of the optical depth

of the extinction specified. The approximation error is no more than 5-10 percent, which is

quite satisfactory for Monte Carlo methods.
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1. Introduction

Target setting of inverse problem of atmosferic optics
Let’s consider the equation in operator form:

Lf = ψ, (1)

where f , ψ ∈ F . Scalar product is
(
g, h

)
=

∫
g(x)h(x)dx, at that integration is with respect to

domain of h ∈ F , g ∈ F ∗, x is the set of all variables in the problem (time, space and velocities).
Along with operator L we consider adjoint operator L∗, which is defined by

(
g, Lh

)
=

(
L∗g, h

)
(2)

for any functions g and h from the corresponding spaces F ∗ and F . We put into consideration
inhomogeneous adjoint equation

L∗f∗p = p(x), (3)

where p(x) is any function for the time being, f∗p ∈ F ∗. Putting solutions f and f∗p of theequa-
tions (1) and (3) in formula (2) instead of h and g respectively, we obtain

(
f∗p , Lf

)
=

(
f, L∗f∗p

)

or
(
f∗p , ψ

)
=

(
f, p

)
, in other words the functional’s value Ip(f) =

(
f, p

)
can be determined in

two ways; either solve equation (1) and determine the value by formula Ip(f) =
(
f, p

)
or solve

equation (3) and determine the same value by the formula Ip(f) = I∗ψ
(
f∗p

)
=

(
f∗p , ψ

)
.
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Let’s assume that L and L∗ are uniquely defined by the set of some parameters
{
αi

}
,

i = 1, 2, . . . , n and suppose that these parameters change: α′i = αi + δαi, then respectively (δ is
”operator” of perturbation)

L′ = L + δL, f(x) → f ′(x), Ip(f) → I ′p + δIp.

We establish the link between δL and δIp. For this purpose we consider perturbed problem

L′f ′ =
(
L + δL

)
f ′ = ψ (4)

and non-perturbed adjoint problem
L∗f∗p = p. (5)

Multiplying scalarly (4) by f∗p and (5) by f ′, deducting one from another and using the
definition of adjoint operator, we obtain

δIp = −(
f∗p , δLf ′

)
, (6)

where δIp =
(
f ′, p

)− (
f∗p , ψ

)
= Ip(f ′)− Ip(f).

If function ψ isn’t perturbed, then the equation (6) is true, but if the function ψ has a
perturbation δψ, then (6) turns into

(
f∗p , δLf ′ − δψ

)
= −δIp. (7)

Relations (6) or (7) are the base for problem setting and solving inverse problems in aero-
optics.

Suppose, than we know solution of non-perturbed problem (1), that is we know Ipk
(f) and

the set of functionals on solution of perturbed problem is established: Ipk
(f ′), k = 1, 2, . . . ,m,

in this case the right-hand sides of the simultaneous equations are known:
(
f∗pk

, δLf ′ − δψ
)

= −δIp, k = 1, 2, . . . ,m.

On the assumption of linear dependence of L and ψ on αi we can state:

δLf ′ − δψ =
n∑

i=1

δαi

(
Aif

′ − ξi

)
,

where Ai are known operators, ξi are known functions.
In order to determine δαi we come to the system of equations:

n∑

i=1

aikδαi = −bk, aik =
(
ϕ∗pk

, Aif
′ − ξi

)
, bk = δIpk

, k = 1, 2, . . . ,m.

Since the coefficients depend on unknown solution f ′ of perturbed problem, then for absolute
defining of the system we could use the method of successive approximations or, if perturbations
are small, then simply substitute f ′ for f .

It should be noticed, that the given algorithm is applicable in case of non-linear dependence
of operator L and function ψ on parameters. This case require linearization [2].

2. Collision density and particle flux

Φ
(
~r, ~ω

)
is a particle flux (emission intensity), f

(
~r, ~ω

)
is a collision density, f

(
~r, ~ω

)
= σ

(
~r
) ·

Φ
(
~r, ~ω

)
, τ =

L∫
0

σ
(
λ, ~r(l)

)
dl, ~r =

(
x, y, z

)
, τ is a optical layer thickness along path L of light

beam.
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We obtain an integral transport equation with respect to f . Since f = f0 + f1 + · · · + . . . ,

then f =
∞∑

n=0
Knψ (Neumann series), where ψ = f0. Consequently, we have

f
(
~x
)

=
∫

X

k
(
~x, ~x′

)
f
(
~x′

)
d~x′ + ψ

(
~x
)

or f = Kf + ψ, (8)

where k(~x′, ~x) =
σs(~r)g(µ) exp

(
−τ(~r′, ~r)

)
σ(~r)

σ(~r′)2π|~r−~r′|2 δ
(
~ω − ~r−~r′

|~r−~r′|

)
.

Here ~r is space point, ~x = (~r, ~ω) is point in phase space X; µ =
(
~ω′, ~r − ~r′

)
/|~r − ~r′| is a

cosine of scattering angle; ~ω′ ∈ Ω, ~ω′ is a direction of the beam, with intensify ~ω, σs(~r) is a
light scattering coefficient; σc is an absorption factor, σ(~r) attenuation constant of the flux, with

scattering indicatrix σ = σs + σc, g(µ, ~r) is a ,
+1∫
−1

g(µ, ~r)dµ = 1, τ(~r′, ~r) is an optical length of

the segment |~r′ − ~r|, δ
(
~ω − ~r−~r′

|~r−~r′|

)
is a delta-function [1].

3. Local estimate of particle flux

It is known that local estimate of particle flux in the fixed point in phase space ~x′ =
(
~r′, ~ω′

)
have form [2]

∫

Ωi

Φ
(
~r′, ~ω′

)
d~ω′ =

∫

X

li
(
~x, ~x′

)
f(~x)d~x = E

N∑

n=0

Qnli
(
~xn, ~x′

)
, (9)

where li
(
~x, ~x′

)
=

exp
(
−τ(~r, ~r′)

)
g(µ′)

2π|~r−~r′| ∆i(~s′). Here ~s′ = ~r′−~r
|~r′−~r| , µ =

(
~ω, ~s′

)
and ∆i(~s) is an indicator

of the domain Ωi.

4. Method of dependent tests with fixed altitude

We consider an algorithm of method of dependent tests for the case when precise physical
transport process modeling is executed in ”basic” system (λ = λ0) [1].

Different integral characterizations of transport process can be expressed as linear functionals
of transport equation’s solutions

Iϕ =
(
f, ϕ

)
=

∫

X

f(~x)ϕ(~x)d~x =
∞∑

n=0

(
Knψ, ϕ

)
, (10)

where ~x is a coordinate of phase space X.
It follows that for the estimation of functional Iϕ by Monte Carlo methods we need in averaging

the sum of values ϕ(~x) of different-order collision.
The method of dependent tests for transport theory problems consist in modeling of particle’s

trajectory in the different systems are executed with the same trajectories; arising displacements
are removed by special weight coefficients.

Let length of wave, λ is a parameter of the system and since k(~x, ~x′) = k(~x, ~x′, λ), ϕ(~x) =

= ϕ(~x′, λ) = ϕλ. The we have Iϕ =
∞∑

n=0

(
Kn

λψ, ϕλ

)
.
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Consider relation

(
Kn

λψ, ϕλ

)
=

∫
. . .

∫
ψ( ~x0)k( ~x0, ~x1, λ) · · · k(~xn−1, ~x, λ)ϕ(~x, λ)d ~x0d ~x1 · · · d~xn−1d~x =

=
∫

. . .

∫
ψ( ~x0)k( ~x0, ~x1, λ0) · · · k(~xn−1, ~x, λ0)×

× k( ~x0, ~x1, λ) · · · k(~xn−1, ~x, λ)
k( ~x0, ~x1, λ0) · · · k(~xn−1, ~x, λ0)

· ϕ(~x, λ)d ~x0d ~x1 · · · d~xn−1d~x.

Hence, trajectories constructed for λ = λ0 can be utilized for estimate Iϕ(λ), if after each

passage ~x → ~x′ auxiliary ”weight” of particle is multiplied by
k(~x, ~x′, λ)
k(~x, ~x′, λ0)

. Suppose that there

are no points ~x, ~x′, such that k(~x, ~x′, λ) 6= 0 but k(~x, ~x′, λ0) = 0. Practically k(~x, ~x′, λ)
is represented as a product of conditional probability densities of elementary random values
(length of free path, direction of scattering etc.). After each elementary ”sample” auxiliary
”weight” of particle is multiplied by the ratio of corresponding probability densities for λ and
λ0. After sampling the length of free path l = |~r′ − ~r| ”weight” should be multiplied by

σ(~r′, λ) exp
(
−

|~r′−~r|∫
0

σ(~r + ~ω′l, λ)dt
)

σ(~r′, λ0) exp
(
−

|~r′−~r|∫
0

σ(~r + ~ω′l, λ0)dt
) =

σ(~r′, λ)
σ(~r′, λ0)

· exp
(
− (

τ(~r, ~r′, λ)− τ(~r, ~r′, λ0)
))

,

Thus recurring formulas for auxiliary ”weights” have form

Qn(λ) = Qn−1(λ) · σ(~r′, λ)
σ(~r′, λ0)

· exp
(
− (

τ(~r, ~r′, λ)− τ(~r, ~r′, λ0)
))

.

After sampling µ = (~ω, ~ω′) which is cosine of scattering angle, we have

Qn(λ) = Qn−1(λ) · g(µ, ~r, λ)
g(µ, ~r, λ0)

.

By means of the method of dependent tests we can estimate change of radiation field while small
changes in aerosol scattering coefficient, albedo or indicatrix; for this purpose it’s sufficient to
change some characteristics of the model.

Ik = Iϕk
(λ) – derivative estimations.

Let Ik = Iϕk
(λ) depends on some certain parameter t. Then

Ik =
∞∑

n=0

∫
. . .

∫
ψ(~x0)

n−1∏

p=0

k(~xp, ~xp+1, t0, λ0)
n−1∏

p=0

k(~xp, ~xp+1, t, λ)
k(~xp, ~xp+1, t0, λ0)

ϕk(~xn, t, λ)d~x0d~x1 . . . d~xn.

Now compute ∂Ik
∂t |t=t0 . Suppose that the last series are termwise differentiable and differen-

tiation can be done under the corresponding integral signs. Then formally we have
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∂

∂t

(
ψ(~x0)

n−1∏

p=0

k(~xp, ~xp+1, t0, λ0)
n−1∏

p=0

k(~xp, ~xp+1, t, λ)
k(~xp, ~xp+1, t0, λ0)

ϕk(~xn, t, λ)

)

t=t0

=

= ψ(~x0)
n−1∏

p=0

k(~xp, ~xp+1, t0, λ0)Qn(λ, t0)ϕk(~xn, t0, λ)×

×
(

∂ ln ϕk(~xn, t0, λ)
∂t

+
∂ ln Qn(λ, t)

∂t

)

t=t0

=

= ψ(~x0)
n−1∏

p=0

k(~xp, ~xp+1, t0, λ0)Qn(λ, t0)ϕk(~xn, t0, λ)Ψn(λ, t0)Ψn(λ, t) =

=

(
∂ ln ϕk(~xn, t, λ)

∂t
+

n−1∑

p=0

∂ ln k(~xp, ~xp+1, t, λ)
∂t

)

t=t0

. (11)

In order to compute derivatives of local estimates, let have the following designations: σa(~r, λ)
is a section of aerosol scattering with indicatrix ga(µ,~r, λ), σm(~r, λ) is a section of molecular
scattering with indicatrix gm(µ,~r, λ), σc(~r, λ) is a absorption section, µ(~ω, ~ω′) is a cosine of
the angle between the previous and the next direction of the particle in the collision point,
σ(~r, λ) = σa(~r, λ) + σm(~r, λ) + σc(~r, λ) is full section, g(µ,~r, λ) = ga(µ,~r,λ)σa(~r,λ)+gm(µ,~r,λ)σm(~r,λ)

|~rn−~rk|σ(~r,λ)

is full indicatrix, τ(~rn, ~rk, λ) =
∫

σ(~rn + ~ωkl, λ)dl is called ”the optical depth”, where (~ωk)l =
= ( (~rk−~rn)

|~rk−~rn| )l is called ”the optical length from ~rn to ~rk”, ~ωk is unit length vector.
Suppose that σc(~r, λ) is known. Then for estimation of the derivative of the functional

Ik = Iϕk
(λ) by σ(~r, λ), we need in estimations for derivatives of the aerosol and molecu-

lar scattering coefficients, that is in this case we take t = σa(m,λ), t0 = σ
(0)
a (m,λ), next

t = σm(m,λ), t0 = σ
(0)
m (m,λ). After that we need to estimate intensity integral that depends

on these two parameters. Final estimate of the full section σ̃(~r, λ) obtained from the estimates
σ̃(~r, λ) = σ̃a(~r, λ)+ σ̃m(~r, λ)+σc(~r, λ), where σ̃a(m,λ) is an estimation of the aerosol scattering
coefficient σa(m,λ), σ̃a(m,λ) is an estimation of the molecular scattering coefficient σm(m,λ).
Now consider the process of particles’ transport in the medium with indicated characteristics.
Suppose that we need to estimate radiation intensity integral in the line of the given point ~r∗.
In this case

ϕ∗k = ϕ∗k(~rn, ~ω∗n, λ) = c1
exp

(− τ(~rn, ~r∗, λ)
)(

ga(µ∗, ~r, λ)σa(~r, λ) + gm(µ∗, ~r, λ)σm(~r, λ)
)

σ(~rn, λ)

and

k(~xp, ~xp+1, λ) = c2
σ(~rp+1,λ)
σ(~rp,λ) ×

× exp
(
− τ(~rp, ~rp+1, λ)

(
ga(µp, ~rp, λ)σa(~rp, λ) + gm(µp, ~rp, λ)σm(~rp, λ)

))
,

where µp(~ωp−1, ~ωp).
Next,

Ik(λ) = E
N∑

n=0

Qn(~rn, λ)ϕ∗k(~rn, λ).

Let the atmosphere be divided onto ni layers and in each of them the aerosol and molecular
scattering coefficients are constants, σc(~r, λ) is also fixed. Let’s use the designations: σ(~r, λ) =
= σ(m,λ), g(µ,~r, λ) = g(µ,m, λ), where hm < |~r| ≤ hm+1, m = 0, 1, . . . , ni − 1; ψk

m = 1 if
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m = k, else ψk
m = 0 if m 6= k; µ∗n is a cosine of the angle between the particle’s direction

before the n-th collision in the point ~rn and direction ~ω∗ = ~r∗−~rn
|~r∗−~rn| ; N(n) is a number of the

domain where the collision point ~rn is situated; m(n, i) are the numbers of the domains, which
particle intersect with between the collision points ~rn−1 and ~rn; i(n) is a total number of such
intersections; ln,i are the segments of such intersections; m∗(n, i), i∗(n) and l∗n,i are the same
quantities from ~rn to ~r∗n; Ln,m is a total path length, which the particle covers in the m-th layer
between ~rn−1 and ~rn points; L

(1)
n,m is the same quantity from ~rn to ~r∗n.

Now let’s turn to calculating the derivatives with respect to aerosol scattering coefficient. In
this case t = σa(m,λ), t0 = σ

(0)
a (m,λ).

Calculating the derivatives with respect to molecular scattering coefficient is the same pro-
cedure. For that, due to the symmetry, it’s sufficient to substitute index a for m. Denote
σ̄a(m, λ) = σa(m,λ)− σ

(0)
a (m,λ). We obtain

∂Ik

∂t

∣∣∣
t=t0

=
∂Ik

∂σa(m,λ)

∣∣∣
σa(m,λ)=σ

(0)
a (m,λ)

=
∂Ik

∂σ̄a(m,λ)

∣∣∣
σ̄a(m,λ)=0

.

Then

ϕ∗k(~rn, ~ω∗n, σa, λ) =

= c1

σa(N(n), λ)gm(µ∗n, N(n), λ) +
(
σ

(0)
a (N(n), λ) + ψm

N(n)σ̄
(0)
a (N(n), λ)

)
ga(µ∗n, N(n), λ)

σ
(0)
m (N(n), λ) + σ

(0)
a (N(n), λ) + ψm

N(n)σ̄
(0)
a (m,λ)

×

× exp

(
−

i∗(n)∑

i=1

l∗n,i

(
σ(0)

m (m∗(n, i), λ) + σ(0)
a (m∗(n, i), λ) + ψm

m∗(n,i)σa(m,λ)
))

.

So,

∂ ln ϕ∗k
∂σ̄a(m,λ)

=

= −L
(1)
n,m +

ψm
N(n)ga

(
µ∗n, N(n), λ

)

σ
(0)
m (N(n), λ)gm

(
µ∗n, N(n), λ

)
+ σ

(0)
a (N(n), λ)ga

(
µ∗n, N(n), λ

) −

−
ψm

N(n)

σ
(0)
m (N(n), λ) + σ

(0)
a (N(n), λ)

, (12)

since
i∗(n)∑

i=1

l∗n,iψ
m
m∗(n,i) = L(1)

n,m.

Calculate

∂ lnQn(λ)
∂σ̄a

=
n−1∑

p=1

∂ ln k(~xp, ~xp+1, σa, λ)
∂σ̄a(m,λ)

=

=
∂ ln

(
σ

(0)
m (N(n), λ) + σ

(0)
a (N(n), λ) + ψm

N(n)σ̄a(N(n), λ)
)

∂σ̄a(m,λ)
−

−
n∑

p=1

∂

∂σ̄a(m,λ)

( i(p)∑

i=1

lp,i

(
σ̄m(m(p, i), λ) + ψm

m(p,i)σ̄a(m,λ)
))

+

+
n∑

p=1

∂ ln

(
σ

(0)
m (N(p),λ)gm(µp,N(p),λ)+

(
σ

(0)
a (N(p),λ)+ψm

N(p)
σ̄a(m,λ)

)
ga(µp,N(p),λ)

)

∂σ̄a(m,λ) . (13)
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At last,

∂ ln Qn(λ)
∂σ̄a(m,λ)

∣∣∣
σ̄a(m,λ)=0

=
ψm

N(n)

σ
(0)
m (N(n), λ) + σ

(0)
a (N(n), λ)

−
n∑

p=1

Lp,m +

+
n−1∑

p=1

ψm
N(p)ga(µp, N(p), λ)

σ
(0)
m (N(p), λ)gm(µp, N(p), λ) + σ

(0)
a (N(p), λ)ga(µp, N(p), λ)

. (14)

Combining (12), (13) (14), we obtain the expression for derivative estimate

∂Ik

∂σ̄a(m,λ)

∣∣∣
σ̄a(m,λ)=0

= E
N∑

n=1

Qn(~rn, σ(0)
a , λ)ϕ∗(~rn, ~ω∗n, σ(0)

a , λ)Ψn(λ), (15)

where

Ψn(λ) = −L
(1)
n,m +

ψm
N(n)

ga(µ∗n,N(n),λ)

σ
(0)
m (N(n),λ)gm(µ∗n,N(n),λ)+σ

(0)
a (N(n),λ)ga(µ∗n,N(n),λ)

−

−
n∑

p=1

Lp,m +
n−1∑

p=1

ψm
N(p)ga(µn, N(p), λ)

σ
(0)
m (N(p), λ)gm(µp, N(p), λ) + σ

(0)
a (N(p), λ)ga(µp, N(p), λ)

.

For convergence of Neumann’s series it’s sufficient that ‖K‖ = q < 1. After termwise formal
differentiation for arbitrary σa value from

(
σ

(0)
a − ε, σ

(0)
a + ε

)
we have

∂Ik(σa)
∂σa

= E
N∑

n=1

Qn(~rn, σa, λ)ϕ∗(~rn, ~ω∗n, σa, λ)Ψn(λ).

On the assumption of bounded medium (therefore, |~rn−1 − ~rn| < c1 < ∞) and
σ(~r, λ) < c2 < ∞, it’s easy to have

Qn(~rn, σa, λ)ϕ∗(~xn, σa, λ)Ψn(λ) ≤ cqn
ε · nQn(~rn, σ(0)

a , λ)ϕ∗(~rn, σ(0)
a , λ,

where qε → 1 while ε → 0.
If ‖K‖ < 1 and ε is such that ‖K‖ · qε < 1, then the derivative is majorizable by function

that is not depended on any parameter, whose expected value is limited. Therefore derivative
integral with respect to probability measure converges while |σa−σ

(0)
a | < ε. So, differentiability

of (11) and estimate (15) were proved. We consider

Ip(f) =
∫

D

∫

∆Ω

f · ξ · δ(~r − ~r0) · d~r · d~Ω

as the functionals of the problem, ξ is a known function.
Suppose we look for full section σ(~r, λ)

(
σ(~r, λ) = σa(~r, λ)+σm(~r, λ)+σc(~r, λ) is full section

)
.

While we look for constant coefficients in different layers, that is ~σa ≡ ~σ = (σ1, . . . , σn), ψ is
not perturbed (ψ is external source). δLf = δ

(
f −Kf

)
is represented as a Taylor’s series with

respect to ~σ near ~σ0

δ
(
f −Kf

) ≈
n∑

i=1

∂

∂σi

(
f −K ′f

)∣∣∣
~σ=~σ0

∆σi. (16)

Put (16) into (6),

(
f∗pk

, δLf
)

=

(
f∗pk

,
n∑

i=1

∂

∂σi

(
f −K ′f

)∣∣∣
~σ=~σ0

∆σi

)
=

=
n∑

i=1

((
f∗pk

,
∂

∂σi

(
f −K ′f

))∣∣∣
~σ=~σ0

∆σi

)
, k = 1, . . . , n.
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Or
n∑

i=1

∂Ik

∂σi
∆σi = −δIpk

=⇒ A∆~σ = ~b. (17)

Obtained system (17) is inconsistent (m > n), therefore we need in most convenient values for
∆σi. We do it by minimizing the following expression ‖A∆~σ −~b‖2 = δ2 and obtain: A∗A∆~σ =
A∗~b. Demand normal distribution of errors for Ip measurements and a little difference between
them. Otherwise it’s possible to use statistical weights

A∗WA∆~σ = A∗W~b. (18)

This system was solved by method of minimal errors. If the system (18) would be ill-conditioned
we can apply regularization methods [12]. According to this method we’ll minimize the following
expression ∣∣∣

∣∣∣A∗WA∆~σ −A∗W~b
∣∣∣
∣∣∣ + αQ

[
∆~σ

]
= δ,

where Q
[
∆~σ

]
=

(
∆~σ, Q∆~σ

)
, Q is approximate value in matrix form for

H∫

0

∣∣∣∣∣
m∑

i=1

qi(x)
diσ

dxi

∣∣∣∣∣dx

Here H is a height of atmosphere, qi(x) > 0. The last means that there are additional constraints
imposed on solution class. Usually i = 1, qi(x) ≡ 1, that is, limited derivative for ∆~σ is
demanded. Regularization coefficient α can be found approximately by different means. For
example, in [3] the following value is presented:

α =
n(

∆~σ, Q∆~σ
) , (19)

where n is a number of dimensions. But as α depends on unknown solution, we suggest put the
right hand sides of equation (19) instead of ∆~σ. Then

α =
n(

A∗W~b, QA∗W~b
) . (20)

It’s relevant to notice, that if dependence of L (L is operator) from σi is not linear (that
is Ik = Ik(σ1, . . . , σn) is nonlinear functional), then the problem can be solved by method of
successive approximations, using the formula of small perturbations; coefficients aik are the
partial derivatives

aik =
∂Ik

∂σi
, k = 1, 2, . . . , n0, i = 1, 2, . . . , n.

In this case the numeric calculations of derivatives are implemented by Monte Carlo methods.
[1].

Let’s consider another approach to numeric solving of inverse problem. Target setting doesn’t
change. Let we have a set of measured functionals Ĩk(σ1, . . . , σn) =

(
f, ϕk

)
, k = 1, 2, . . . , nθ,

where f is a solution of transport equation Lf = ψ. It’s required
(
σ1, . . . , σn

)
.

If
(
σ

(0)
1 , . . . , σ

(0)
n

)
are some prognostic values of these parameters, then applying perturbation

theory we arrive at system of equations
n∑

i=1

aikδσi = Ĩk − I
(0)
k
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on conditions that L depends on σi linearly; here I
(0)
k = Ik

(
σ

(0)
1 , . . . , σ

(0)
n

)
. If the indicated

dependence is not linear then problem can be solved by method of successive approxima-
tions, using the formula of small perturbations; coefficients aik are the partial derivatives
aik = ∂Ik

∂σi
, k = 1, 2, . . . , nθ, i = 1, 2, . . . , n. Calculation of derivatives by Monte Carlo

methods was described above.
The weights are inversely proportional to I

(0)
k . Then

s∑

i=1

∂Ik

∂σi
· 1

I
(0)
k

·∆σi = ln Ĩk − ln I
(0)
k , k = 1, 2, . . . , nθ. (21)

It might be noticed that system (21) is a result of linearization of equations ln Ik(σ1, . . . , σn) =
= ln Ĩk, k = 1, 2, . . . , nθ, in

(
σ

(0)
1 , . . . , σ

(0)
n

)
. System (21) is an overspecified problem, therefore

we apply least squares method.
Estimation of full section σ(~r, λ) = σa(~r, λ) + σm(~r, λ) + σc(~r, λ) is done within two steps:

first, estimate σa(~r, λ) with indicatrix ga(µ,~r, λ), later, due to the symmetry, we can estimate
σm(~r, λ) with indicatrix gm(µ,~r, λ). As σc(~r, λ) is known, then

σ(~r, λ) = σa(~r, λ) + σm(~r, λ) + σc(~r, λ). (22)

Remark 1. Using the methods above σc(~r, λ) also can be estimated (if σc(~r, λ) is an unknown
parameter). Having estimations for (σa(~r, λ), σm(~r, λ), σc(~r, λ)) we can estimate full section by
formula (22).

Remark 2. Estimation of derivatives of Ik by Monte Carlo methods with respect to param-
eters τ (is optical depth) and Pa (is albedo) allows one to estimate these parameters with the
methods mentioned in the article.

5. Computing Experiment

Optical depth of the extinction τ of cloudless sky was measured near Astrophysical Institute
named after V.G. Fesenkov (Almaty, Kazakhstan, 1350 meters above sea level) during a period
from 1996 to 2004 in summer and autumn months in spectral range of 0.42 – 1.28 micrometers.
Full-sized measurements for 2003 – 2004 are given in the table. They are provided by V.N.
Glushko – research worker of Astrophysical Institute and Institute of Space Researches named
after U.M. Sultangazin. I express him my acknowledgement of thanks.

Optical depth of the extinction over a period 2003 – 2004 years
(antemeridians values)

Yars λ micrometer 0.421 0.478 0.540 0.667 0.796 1.28
2003 τ 0.364 0.259 0.193 0.113 0.078 0.060
2003 σ 0.031 0.027 0.023 0.014 0.013 0.008
2003 ∆ 8.64 10.5 12.0 12.7 17.3 13.2
2003 N 13 13 13 13 13 13
2004 τ 0.360 0.258 0.199 0.122 0.083 0.060
2004 σ 0.047 0.039 0.042 0.036 0.041 0.030
2004 ∆ 13.0 15.2 21.3 29.1 49.0 52.2
2004 N 7 7 7 7 7 7
mean τ 0.364 0.256 0.194 0.115 0.081 0.065
mean σ 0.042 0.035 0.031 0.023 0.022 0.020
mean ∆ 11.5 13.4 16.1 20.4 27.6 30.7
mean N 65 66 66 66 63 65
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The numerical experiment was implemented in Institute of Space Researches. Optical depth
of the extinction τ was estimated based on the data of 2003-2004 (August and September).
Comparison with full-sized measurements shows that an error (difference) is no more than 5-10
percent, which is quite satisfactory for Monte Carlo methods.

Here to bring the means for 1996 – 2004 years, λ is wave-length, τ is optical depth of the ex-
tinction, σ is mean square difference (standard deviate), ∆ is variation coefficient (in percentage
terms) for every years of measuring, N is number days of observations.

Many questions of the given article are considered in [4] - [11].
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